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Heat transfer to a quadratic shear profile 

By D. A. SPENCE AND G. L. BROWN? 
Department of Engineering Science, Parks Road, Oxford 

(Received 5 September 1967 and in revised form 22 February 1968) 

An operational method is used to obtain an exact solution for the heat transfer 
from a surface on which the temperature is prescribed to a stream in which the 
velocity profile is given by 

*& = (PwPuJ-l [w+ (&$1/2] 1 

where 7 = s” Pcly 
0 

and other symbols have their usual meanings. The solution is expanded for small 
and large values of a dimensionless parameter proportional to cdrw/(dp/dx)z: the 
leading term when this is large is precisely Lighthill’s (1950) expression for heat 
transfer at  high Prandtl number, and that when it is small corresponds to Liep- 
mann’s (1958) expression for heat transfer a t  a separation point. 

Particular attention is given to the case of heat transfer from a small element of 
length 1 maintained at a constant temperature AT above that of the surrounding 
adiabatic wall: this represents the gauge for skin friction measurement de- 
scribed by Bellhouse & Schultz (1966) and Brown ( 1 9 6 7 ~ ~ ) .  It is shown that the 
Nusselt number for heat transfer from such an element is of the form c&(/?/cd), 
where 

and expansions for small and large values of @/a# are given. Over the whole range 
both are adequately represented for experimental purposes by the equation 

which has a form suggested by consideration of the integral approximation of 
Curle (1962). The experimental application of the results to both laminar and 
turbulent flows is discussed. 

1. Introduction 
Lighthill’s (1950) investigation of the heat transfer to a laminar stream from 

a heated wall has been the starting-point for much further work. Lighthill 
solved the boundary-layer form of the diffusion equation, assuming a linear 
velocity profile 

U = Y7w(x)/P, (1.1) 

t Present address: Karman Laboratory of Fluid Mechanics and Jet Propulsion, Cali- 
fornia Institute of Technology, Pasadena, California. 
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r, being the local skin friction and ,u the viscosity. This led to a convolution 
integral relating the heat transfer at  the wall to the distributions of shear stress 
and wall temperature. The velocity profile is certainly of this form close enough 
to the wall, and if the thermal conductivity h of the stream is sufficiently small, 
i.e. the Prandtl number (T = ,uCp/h sufficiently large, heat from the wall will 
penetrate only to a region where the velocity profile is well represented by (1 .1) .  
Lighthill’s result is therefore asymptotically correct for large (T whatever the 
pressure gradient. By means of an elegant dimensional argument, Liepmann 
( 1958) subsequently derived an expression identical in structure to Lighthill’s 
from an integral form of the energy equation, using an empirical assumption of 
similarity between the enthalpy and velocity profiles to evaluate certain para- 
meters, and showed that reasonable assumptions in thisregardled to close agree- 
ment with Lighthill’s exact analysis. Liepmann went on to consider the effect ofa 
pressure gradient, which would make itself felt at  finite Prandtl number by means 
of the second term 

in the velocity profile. For flow near a separation point where (1.3) dominates 
over (1 .  l), he obtained an expression for the heat transfer in which [cr(dp/dx)]~ 
occupies the place taken by (m-,)+ in the Lighthill analysis. A somewhat similar 
analysis was also given by Spalding (1958). Subsequently Curle (1961), using an 
approach modelled on that of Liepmann, has shown how Lighthill’s method may 
be considerably improved in accuracy over the whole range of r, and dpldx, 
the criterion being agreement with exact solutions of the full boundary-layer 
equations for flows of the Falkner-Skan type. This is secured by giving optimum 
values to two constants a and b occurring in his analysis. The details of all three 
methods, and other related work, are contained in Curle (1962, chapter 6). 

Recently Bellhouse & Schultz (1966) have described a technique based on the 
earlier work of Ludwieg (1950) for measuring skin friction by means of a surface 
element maintained at  a temperature above that of the stream. The heat transfer 
from the element should be proportional to ri, according to Lighthill’s theory, 
and this was well borne out experimentally for work in a zero pressure gradient. 
One of us (Brown 1967a, b)  has gone on to apply the same technique in a pressure 
gradient, and the need to relate the Nusselt number of the element as accurately 
as possible to the local values of rw and dpldx has provided the stimulus for the 
work reported in the present paper. 

Instead of approximating in the integrated form of the energy equation, we 
go back to the exact equation, and apply analysis similar to that used by Light- 
hill, but retaining both linear and quadratic terms in the velocity profile. The 
resulting equation can be solved exactly if the shear stress and pressure gradient 
vary in such a way that the ratio 

r&/ (dp/dx)Z (1.3) 

is constant. This requirement puts a limit on the applicability of the results: they 
can be used only when the extent of the heated region of wall is small compared 
witjh the length scale for changes in this ratio. For the small heated elements in 
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question, whose lengths are in the order of lmm., this is an unimportant re- 
striction. The results are of course exact for a Poiseuille-Couette flow with con- 
stant 7, and dpldx. 

In  place of the Airy equation to which Lighthill reduced the energy equation, 
we obtain a hypergeometric equation, and Lighthill’s result is obtained by an 
asymptotic procedure based on the method of steepest descents for the limit 
when 

the role played by Prandtl number is then clearly seen, for the heat transfer is 
obtained as an expansion in powers of ( d p / d x ) / ~ : d .  A result similar in form to 
Liepmann’s is found in the opposite limit 

~ ; , / ( d p / d x ) ~  + 0. 

These results are found in $82 and 3, for a general distribution of wall tempera- 
ture T,(x). The analysis is carried out for a general compressible fluid with con- 
stant Prandtl number. We assume (as do all the authors cited) that heat from the 
wall is diffused as a passive scalar, without affecting the velocity and density 
distributions in the boundary layer. This implies that ATIT,, < 1, where AT is 
the temperature of the heated part of the wall above the adiabatic wall tempera- 
ture Taw. For a typical low-speed experiment in air, AT would be 8O0K, giving 
a ratio of the order of a, but in fact the situation is much better than this because 
the excess temperature falls off very rapidly with distance from the wall. For 
measurements in an arterial blood flow, AT = 5 O K  would be a more typical value. 

We then examine the particular case in which heating takes place only over 
a small length 1 of the surface, representing the skin friction gauge, and obtain 
in $4 expressions for the Nusselt number for heat transfer from the gauge in 
terms of dimensionless parameters 

7;/ (dp/dx)2 + 00 ; 

for small and large values of the ratio p/&. The results in the two limits are of the 
same form as would have been found from an integral solution based on Curle’s 
work, but the constants are slightly different. In  $5 we calculate the fraction of 
the heat from the gauge which crosses planes a t  various heights from the wall, 
in order to judge the usefulness of such a gauge for measuring skin friction in a 
turbulent boundary layer, to which equation (1.1) would apply in the sublayer. 
The paper concludes with a discussion in $6 of the experimental application of 
these results. 

2. The energy equation 
The energy equation for a viscous compressible gas is 

dT dp 
at at pC = - + div ( A  grad T) + (#?, 

where C) is the dissipation function, h the thermal conductivity, and 

a a  
- u  -+v-. 

a - _  
dt - iix ay 

48-2 
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As stated in the introduction, we wish to discuss the passive diffusion of heat 
from a small element in a wall that is otherwise adiabatic, and will suppose that 
the quantity of heat, or the proportional rise in temperature produced by it, is 
insufficient to change the distribution of density and therefore of pressure and 
velocity in the flow field. We can then regard the full temperature field as being 
made up by the linear superposition of the distribution appropriate to the adia- 
batic wall, which is coupled to the velocity field, and satisfies (3.1), and the 
additional temperature generated by the element alone, which satisfies 

d T  
at 

pC - = div (AgradT). 

In the boundary-layer approximation, the right-hand side is replaced by 

(2.3) 

(2.3) 

We shall make this approximation for the present, but it will require re-examina- 
tion in $4.4 when we discuss heat transfer from a gauge of very small streamwise 
extent, for which case the x-derivative on the right of (2.2) may not be negligible. 

Lighthill (1950) then makes the von Mises transformation in which the inde- 
pendent variables are x and the stream function $. The transformation, stated by 
Lighthill for incompressible flow, applies equally well in a compressible flow, for 

pu = a$h/ay, pv = -a$px, (3.4) 
which @ is defined by 

if the standard assumptions 

Cp = constant, pCJh = CT = constant,\ 
(3.5) 

pp independent of y, = pU,(z)pU,(x)  

are made. Equation (2.2) becomes 

By differentiating the boundary-layer momentum equation, the velocity profile 
can be expanded as a Taylor series in the Howarth variable 

(2.7) 

in the form u = ( p , ~ ~ ~ , ) - l [ 7 ~ , 7  + ( l/2pu,) (dp/dz) y2 + ...I. (2.8) 

We now insert the first two terms of this expression for ZL into the energy 
equation (2.6). For this purpose it is convenient to introduce a further inde- 
pendent variable Y in place of $ by writing 

(2.9) 
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We may also replace x by a dimensionless variable X by means of 

dX = ( 4 / 4  (PU,TU,lP3*dX. (2.11) 

Substitution of these expressions transforms (2.6) to the equation 

where A = ~ , ~ ~ / 4 , 4 , ( d ~ i d x ) 2  (2.13) 

is a dimensionless function of X. 
Equation (2.12) is intractable as it stands, but progress can be made for flows 

in which the second term in the square bracket can be discarded in comparison 
with the first. This will be the case (i) for a general Couette-Poiseuille channel 
flow, in which rW and dp/dx are constant (in this case, too, the quadratic used for 
u is exact;) (ii) for boundary-layer flows in which the length scale 1 say for heat 
addition is small compared with that of the surface over which the boundary 
layer has developed. 

To be more precise, we require 

for the term to be negligible, or, what is the same thing, 

1-1 $ (d/dx) (In A). 

For example for a Palkner-Skan flow with external velocity proportional to xm, 
(dldx) (Inn) = (m+ 1)/2x. We therefore require x 9 1 for such a flow, and the 
approximation would be inapplicable close to the leading edge. (The case of flow 
on a flat plate with zero pressure gradient is a degenerate one with A-l = 0. In  
this case (d/dx)(lnA) = 0 and the term does not appear: we then have the 
equation investigated by Lighthill, and his solution is readily recovered by an 
asymptotic method in $4). In  fact, the analysis has been carried out with the 
experimental application in mind of measuring heat transfer from a gauge 
typically 1 mm long mounted on the surface of a plate perhaps 1 m from the 
leading edge: for this application there is no doubt about the validity of omitting 
the term. 

Accordingly, we replace (2.12) by 

16hk( Y 2 -  l)aT/aX = a2T/aYz, (2.14) 

the solution of which will now be found by use of the Laplace transform. We set 

(3.16) 

taking X = 0 as the leading edge of the surface, or some other point upstream of 
the heated element. Since the equation is parabolic, the influence of the heating 
on the temperature field is felt only in the downstream direction, and the gradient 
of the additional temperature due to the element is zero on the line X = 0. The 
Laplace transform of aT/aX is therefore just sp. (This would not be true if the 
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term a2T/aX2 had been retained, and we should have had to use the Fourier 
transform .) 

If the further transformations 

z 
y = where k = s4Ai (2.16) 2kt ' 

and qs, Y )  = T " , ( S ) f ( Z )  (2.17) 

are made, then (2.14) is replaced by the hypergeometric equation 

q + ( 4 k - z 2 ) f =  dZ2 0 (2.18) 

with boundary conditions ,f(2 Jc) = 1, .f(co) = 0. 
The solution is 

(2.19) 

(2 .20)  

where D, is the parabolic cylinder function, whose properties are listed for 
instance by Erdelyi (1953, pp. 115 et seq.) 

The expansion in ascending powers of z is 

f ( ~ )  = [ l - 2 h 2 +  ...- a ( k )  
4 

(2.21) 

where A(k) = 2"-:/D2,-4(2 J[%]) 

(-i)! 
4 2(*)!  

a ( k )  = 2( -l-/q!/( -3-k)! = ~ ( l - - ~ k + O ( k ' ) ) .  and 4 

The solution can also be written as a contour integral 

3. Heat transfer to the wall 
The heat transfer to the wall is given by 

The factor (Aw/,uw), being equal to r 1 C P ,  is independent of x according to our 
assumption in the previous section. The Laplace transform of qw/(pw~l , , ) i  with 
regard to X can therefore be written 

(where k = .s*AS) 

(3.2) 

(3.3) say, where 
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and f ( z )  is the solution of (2.18). By the convolution theorem for Laplace trans- 
forms, we can then write qu, as a Stieltjes integral 

where F ( S )  = 9-1@(s ) ,  (3.5) 

9-l being used to denote the inverse Laplace transform. In  principle this com- 
pletes the solution, since $ ( k )  can be calculated from tables of the known function 

I I I I I I 1 

1.0 2.0 3.0 

k 

FIGURE 1. The function $(k) ,  equation (3.3). 

f ( z )  and the inversion (3 .5 )  could be carried out numerically for any given value 
of A. $(k )  is plotted in figure 1. Useful limiting results can however be obtained 
analytically for the cases when A is very large or very small compared with unity, 
which correspond respectively to flows with small pressure gradient and finite 
skin friction (near flat-plate flow) and finite presure gradient and small skin 
friction (near separated flow). These are obtained by examining the asymptotic 
behaviour of $ ( k )  for large and small E respectively, before performing the 
inversion. 

3.1. Near flat plate flow, A 9 1 

The asymptotic behaviour of $ ( I c )  for Ic 9 1 is most easily found from the contour 
integral representation off(z), equation (2.23). If we set z = 2 %/lc in this equation, 
and define 

I,W = q p (  1 - U,2)--:-pkQ(zl’)&,’ (3 .6)  

for n = 0, 1 ,  where 

(3.7) 
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then (3.3) is 

The integrals I, and 1, can be estimated for large k by the method of steepest 
descents. The saddle point is a t  w = 0, and since g behaves like w3 here, there are, 
in contrast to the usual situation, three hills and three valleys, as indicated in 

FIGURE 2. Steepest descent paths for evaluating I ,  and I , .  

figure 2. The path of integration in each integral can be deformed to the two 
straight lines from e*in to 0 and from 0 to co e d n ,  which are the steepest descent 
paths at 0. If we set t c ~  = elu on the first, and w = e2u on the second, where 

= k-Be+in ,  c2 = k-je-&in 

we obtain 

+ e 2 1  ( 1  - eiu2)-t exp ( - gu3 - geiu5 - . . .) du. 
0 

When the integraiids axe expanded in powers of the e's arid combined the result 
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In exactly the same way we find 

1 1 -  - -fi 2 43k-%[($)-S( -")'+"(")"(g)!k-Q+O(k--2)]. 2 0 2  3 '  

Insertion of these results in (3.8) gives 

where 

Hence 

r 

and Laplace inversion gives 

761 

(3.10) 

(3.11) 

(3.13) 

(3.13) 

as the expansion appropriate for large values of A, to be inserted in (3.4). This 
leads to an expansion of q, in powers of R-b-f  of the form 

where A ,  = 2&2n--5) / a .(+n-$)!. 

In  the limit A 4 co, which corresponds to dpldx = 0, r, + 0, only the first term 
is present; this is precisely that given by Lighthill (1950, equation (29)), appropri- 
ately generalized to compressible flow, the coefficient being 

A, = [3%(j)!Ip1 = 0.539. 

Liepmann's (195s) value for the constant was 0.524. This limit may also be 
regarded as that of high Prandtl number, its physical significance being that heat 
does not penetrate beyond the linear part o€the velocity profile if the conductivity 
is small enough. 

3.2. Plow close to a separat.,on point 

Liepmann (1958) assumed that the flow near a separation point could be repre- 
sented by a quadratic profile of the form (2.8) with r, = 0, dpldx > 0. This cor- 
responds to A = 0, and we now show that Liepmann's semi-empirical treatment 
of this limit can be put on the same theoretical footing as that for the opposite 
limit. Accordingly, we examine the solution when A is small compared with 
unity. It must be recognized however that 1nA would vary rapidly close to a 
separation point xs where, according to boundary-layer theory, 7w GC Ix - xs14, so 
if dpldx remains constant, the limit r,, = 0 is an unrealistic representation of the 
flow at  any appreciable distance from x,; in fact since A is proportional to (Rey- 
nolds number)*, the large A discussion is the physically significant one until one 
is very close indeed to x,. But we include for completeness a discussion €or 
A 4  1. 
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Then k < 1,  by (2.16), and use of (2.21) in (3.3) shows that 
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n:O n=O 

where bO = ( -$) ! I ($) ! ,  6, = b;, b, = b;-zb0 ,  etc., 

and Laplace inversion gives the asymptotic expansion 

(3.16) 

for large X. In obtaining an expression for heat transfer in this case it is better 
to eliminate 7, in favour of dpldx from the expressions for X and qu., by means of 

(2.13) 

With this modification, insertion of (3.16) in (3.4) provides an asymptotic ex- 
pansion in powers of A)up of the form 

B = b [2%-i-&n( - iyb - 1) !I-1, where n n 4 ‘  

For a stepwise distribution of temperature, the integrals on the right are divergent 
for n > 2 ,  and it is necessary to take more careful account of the behaviour of 
F ( X )  near X = 0, which is not described by the asymptotic series (3.16). This is 
considered in $4.4. 

The limit A = 0 corresponds to the case investigated by Liepmann, whose 
expression for a stepwise distibution of wall temperature is then identical in 
form with the leading term of (3.16). Our constant B, is [2$($)!]-1 = 0.4639, 
whereas Liepmann’s corresponding constant (3p/8)* has the value 0.4594 when 
pis estimated in the manner he suggests. One exact solution of the full boundary- 
layer equations exists for heat transfer at a separation point in Palkner-Skan 
flow, with m = - 0.0904 at constant wall temperature T,;. This leads to an 
expression q = -  

W 

where for large (T, f(c) - B o d ,  in perfect agreement with the above limiting 
result. For rr = 0.7, however, the value of Nu/(Re)t for the same flow would be 
0.438, whereas (3.17) with A = 0 would give 0.453. Liepmann’s calculation gave 
0.448. 

4. Nusselt number for an isolated surface element 
The foregoing theory has been developed with the experimental application in 

mind of measuring skin friction by means of a surface film of small streamwise 
extent I, say, heated to a temperature To above that of the surrounding wall. We 
represent this by the ‘ top-hat ’ surface temperature distribution 
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If the gauge is sufficiently small, we may treat pw, pw and dpldx as constant over 
the length of surface over which the temperature field is significantly modified 
by its presence, and use the results of the last section with the appropriate value 
of A. Dimensional analysis then shows that if a Nusselt number for the gauge 
is defined by 

Nu = (AwTo)-l 

Nu can depend only on the two parameters 

(4.2) 

and must be of the form u ~ j ' ( P / u ~ )  if the energy equation is in the form ( 2 . 3 ) .  
These parameters are related to A by 

t(3/b2 = 4gA, (4.4) 

and we may also note that the ratio of the pressure drop over the length of the 
element to the shear force on it, a natural parameter in which to expand the 
Nusselt number, is 

We now express Nu in terms of u and p. 
One caveat must be entered at  this stage concerning the applicability of the 

energy equation in the form we have used up to now: should we retain the term 
a/8x(A[azl/ax]) on the right-handsideof (2.2) when thereis an abrupt discontinuity 
in Tw(x)? To do so accurately makes the analysis of $52 and 3 a good deal more 
elaborate; but it is easy simply to estimate the order of magnitude of the in- 
fluence of the extra term by a dimensional analysis of the full energy equation, 
which is carried out in $4.4. In fact, a typical experimental value for a is of the 
order of 50, which means that the gauge is long enough for the effect to be un- 
important; but before looking more closely into this we obtain the necessary 
result's with the term left out. 

4.1. Near-Jut-plate Jlow 

Since the solution of the energy equation has been carried out in co-ordinates 
transformed in accordance with (2.11), we take the boundary conditions (4.1) as 
applying in the transformed intervals IX - X,I 2 +A, say, where 

Then substitution of (4.1) in (3.4) shows that for X,- &L < S < X ,  + $A, 

(4.7) 

Integration with respect to x gives 
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where we have written X - (5, - &L) = X', and used the fact that 
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For near-flat-plate flow, F ( X )  is given by (3.13), and on integration 

Expressed in terms of ct and /i' defined by ( &3), this is 
m 

NU = ct5 C', 
n.=O 

(4.9) 

(4.10) 

where 

The first three terms are 

Cn = 2%(n-1) .,/(in + i.)!. 

4.2. Plow near a separation point 

In  this case too the Nusselt number is given by the integral (4.8), but a difficulty 
arises when the expansion (3.16) for P ( X )  is inserted, since the integrals of all the 
terms beyond the third diverge a t  the lower limit. However we can split up the 
integral as follows: 

where b; is written for b,R3(3n-1)/( - an-$)!. It will be noted that 

b' - b' - - , - ... = 0. 

The second integral can be evaluated as it stands. In  the third, we can replace the 
integrand by the asymptotic expansion 

m 
C 6; S-L(n-1 I), 

n=4 

provided L (or more strictly AgLf) is large enough. It remains to evaluate the 
first term. This can be looked on as the limit as s + 0 of 

3 

7 l = O  

@(s) - b, RQ(3n-l) zk(n-31, i.e. of d 

and this limit, by (3.15), is just b,R. Altogether we find therefore, that for large 
A Q L ~ ,  

(1.13) 
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(the terms for n = 7, 11, ... are now absent, but not that for n = 3). Substitution 
for A and L from (4.4) and (4.6) gives 

(4.14) 

The first three terms are 

4.3. Comparison with an in,tegral solution 

From the thermal energy integral equation Curle (1961) derives a differential 
equation for the heat transfer from a surface to a quadratic shear profile. For 
constant skin friction and pressure gradient and a ' top-hat ' temperature distri- 
bution Curle's equation may be immediately integrated to give, in our notation, 

(4.16) 

where a and b are the constants given by Curle. In  order to make a comparison 
with our results qu,(x) is found as an expansion for small and large P/a+ and then 
integrated over the length 1 to give 

(4.17) 

(4.18) 

These are identical in form with (4.10) and (4.14) and the leading terms 
differ by only 14 and 4 yo respectively. It is not surprising that the leading terms 
agree so well because Curle has chosen a and b such that the prediction of heat 
transfer by his method agrees closely (1 yo) with the exact solution for the heat 
transfer to the Falkner-Skan similarity profiles, and the limits p = 0 and a = 0 
correspond to the zero pressure gradient and zero skin friction similarity profiles 
(particularly for large Prandtl number). The coefficients of the second terms are 
in error by 12 yo and 3 yo compared with those of (4.10) and (4.14). This rather 
close agreement, however, is further support for the accuracy of Curle's method 
for the prediction of heat transfer. 

It is worth considering the approximate relationship between Nu, a and p 
which may be obtained from Curle's differential equation if it is assumed that 
qw(x) is proportional to a function of x which does not depend on skin friction or 
pressure gradient. In this case (4.16) leads to the simple result 

P c , ~ + c  -- = Nu3, 
2 N ~  

(4.19) 
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where the constants c1 and c2 depend on the assumed function of x. The func- 
tional form of this equation 

N u  = aif (5) 
is of the same form as our results and, indeed, if c1 and cg have the respective 
values 0,5266 and 0.1463 (chosen so that (4.19) agrees exactly with (4.10) and 
(4.14) in the two limits ,8 = 0, a 5 0) then (4.19) becomes an  equation for N u  that 

2.0 

1 4 

1.6 

1.4 

1.2 

- 

- 
Linear interpolation, equation (4.16) 

with c,  = 0.5266, cz = 01463 

Series solution (4.10) 

0 0.2 0.4 0.6 08 1.0 

c2 P -- 
c1 ~ N U  

FIGURE 3. Linear interpolation to asymptotic formulae. The relation between a,  P and N u  
given by t>he interpolated line has a form suggested by a consideration of the integral 
approximation of Curle (1962). 

by good fortune agrees closely with our results over the whole range of as 
shown in figure 3. As a result this simpler relationship may be used for experi- 
mental purposes instead of the two series. 

We note that these values of c1 and c2 may be compared with those obtained 
by assuming a function for a,($). Bellhouse & Schultz (1966) treated qw(x) as 
constant over the length of the gauge and obtained (4.19), their equation (A 1.2), 
with c1 and c2 0.2226 and 0.0523 respectively. A more accurate result may be 
obtained if qw(x) is assumed proportional t o  xn. Liepmann & Skinner (1954) 
showed that for zero-pressure gradient n is - Q and for zero skin friction finite 
pressure gradient n is - $. If n is taken as - + independent of pressure gradient 
c1 and c2 have the values 0.501 and 0.353. 

4.4. Ejfect of gauge length 

To investigate the way in which the above results would be modified if the term 
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in (2.2) were retained, as would certainly be necessary if the gauge length 1 were 
sufficiently small, we may look at the full energy equation for a quadratic velocity 
profile independent of 2, assuming constant fluid properties and making lengths 
non-dimensional with I by means of 

t = x / l ,  q = y/l. 
aT a2T a2T 

(a7 + &lq2) - = ~ + ~ 
Equation (2.2) is then a t  a p  a q 2 ’  

(4.20) 

where a and /3 are the parameters defined in (4.3), with boundary conditions 

The Nusselt number for the gauge is 

(4.21) 

The boundary condition (4.20) ensures that variations in the 6 direction, repre- 
sented by the terms a!P/at and a2T/at2, are O(l) ,  and we now scale the 7 co- 
ordinate so as to make the coefficients of the first and third terms in the equation 
of the same order. Firstly, for near flat plate flow with p/a* small, we write 

q = a-%/’, 

when (4.19) becomes (4.22) 

Hence if a-3 -g 1, the term in a2T/at2 can be omitted; the Nusselt number is then 
exactly that found in $4.1. However, it is only if p/a% 3 a-3 that this expansion 
correctly represents the effect of the pressure gradient; if this inequality is not 
satisfied, we should also take account of gauge size. 

To look at the opposite limit of flow near a separation point, when a/@ is 
small, we write q = p-iq”, when (4.19) becomes 

(4.23) 

Thus if the gauge is long enough for p-4 to be small compared with unity, the 
expression for N u  found in $4.2 can be used, with the proviso that it correctly 
represents the influence of the parameter (r,/Z)/(dp/dx) only if the further in- 
equality alp! 9 p-* is also satisfied. We have in fact solved (4.19) in the two 
extreme cases p = 0 (flat plate) and a = 0 (separation point), and obtained the 
following expressions for Nusselt number : 

flat plate: 

where $” = - Ai’(O)/Ai(O) = 3*( -+)!I( - $)!;  

(4.24) 

(4.25) 

where b, is the constant previously defined. The leading terms are identical with 
those of (4.10) and (4.14) respectively. 
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5. Heat flux across a plane parallel to the surface 
For the foregoing theory to be applicable to skin friction measurement in a 

turbulent boundary layer, the velocity profile must be well represented by (1.1) 
within the region to which the heat from the gauge penetrates. According to the 
law of the wall, the sublayer is of this form, whatever the pressure gradient, up 
to the point where yu,/v = 12, where u, is the friction velocity (7,lp)f.  To assess 
the relevance of the theory, we examine in this section the flux of heat across a 
plane y = constant, as a function of the parameter a, which can be rewritt,en 

u,l 
u = rT (;) . 

We asslime that the thermal conductivity within the sublayer is still molecular, 
despite the possible presence of turbulent eddies. If the velocity profile is inde- 
pendent of pressure gradient, and the condition a% & 1 derived in $4.4 is satisfied, 
the energy equation may then be taken as 

where < = (x--x,+ &i)/i, = y/l (so that the heated element extends from 
,$ = 0 to 6 = 1). On Laplace transformation with respect to <, this takes the form 
of Airy’s equation 

where 

The solution is 
- -  Ai ( 2 )  T = T,(s) __ 

Ai(0)’  

(5.3) 

(5.4) 

(5.5) 

where Ai(z) is the Airy function (Jeffreys & Jeffreys 1946, p. 477). It is sufficient 
to calculate the heat transfer for the case when T,([) is a step function at  ,$ = 0, 
and subsequently to find that for a top hat distribution by subtracting from it the 
solution for an equal step function at 6 = 1. Accordingly we set pw(s) = AT/s 
in (5.5). 

The flux of heat outwards across unit area of the plane T,I = constant is 

h aT 
i a q ’  

with Laplace transform - ~ - Ai’[ (us)*r]/Ai( 0) , 
1 s8 

which on inversion gives the heat flux as 

say, where 
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The heat flux from a top hat distribution in T, is given by (5.6) for 0 < 6 < 1, 
and by 

for ( > 1.  

For large y ,  

0 1 .o 20 3.0 4.0 

Y 
FIGURE 4. The function N ( y ) ,  equation (5.11).  

The Nusselt number for heat flux across a length 18 of the plane 7 = constant is 

say, for 0 < .$ < 1, where N ( y )  = SY&(y’)dy’;  
0 

for > 1 it is 

(5.10) 

(5.11) 

(6.12) 

The quantity N ( y )  has been computed from expansions of (5 .7 )  for small and 
large y and is plotted in figure 4. As y -+ co 

N ( y )  N [33/2(+)!]y% = KyQ say. 

This provides a check that the Nusselt number of the gauge itself, given by 

(5.13) 
setting ( = 1, 7 = 0 in (5.10) is 

We also see that for all 7, the limit as (-too of (5.12) is zero, since 

NU(<, 7) - Ka+@ - (5 - 1)8] + o 

(3”)4/2(+) !. 

as t-+ CO; 

thus the total amount of heat crossing any plane 7 = constant (including the 
plane 7 = 0)  is zero. 
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Because of the parabolic form of the energy equation, the heat flux from the 
element 0 < < 1, 7 = 0 ,  is governed only by the flow in the strip 0 < ( < 1. 
An indication of the applicability of these results is therefore given by a graph of 
t,he Nusselt number for length I of the plane 7 = constant; if this has become very 

0 1 2 3 4 

af, 

FIGURE 5 .  Rat'io of heat crossing the part of the plane y = 71 directly above the gauge to 
total heat transferred from gauge to stream. 

small compared with the Nusselt number at the wall for values of 7 lying within 
the sublayer, they may safely be used for inferring turbulent skin friction from 
the heat transfer by means of (5.13). The ratio is 

(5.14) 

This is plotted as a function of a ) ~  in figure 5 ,  and it is seen that less than 1 yo of 
the heat supplied from the surface crosses the plane = 3a-*. 

At this plane we have 

1' 

This must be less than about 12 if it is to  be within the sublayer, so we must have 

a% = V ~ ( U ~ ~ / V ) $  < 2 . 5 6 ~ ~  

and since we also require a3 > 12.3 for the result (5.13) to give r, within 5 yo, it 
appears that the gauge length must be such that the Reynolds number u71/11 

(5.15) 
lies in the range, say 

6.61d < uTl/lj < 6 4 ~ .  

This is discussed in reference to the experiments in the next section 
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6. Application of the results and some experiments 
6.1. Applicability of the analysis 

The heated film technique to measure skin friction has been used by Bellhouse & 
Schultz (1966) and Brown (1967 a, b). A platinum film is maintained at constant 
temperature with the usual hot-wire, constant resistance equipment and, if the 
losses to the substrate are constant, the additional power supplied to the element 
is related to skin friction, pressure gradient and fluid properties by the relations 
given in $ 4  provided: (1) a8 > 1 so that the ‘boundary layer’ form of the energy 
equation applies; (2) the length of the film is sufficiently small for the penetration 
of heat to be confined to the part of the velocity profile that is adequately de- 
scribed by the first two terms; (3) the approximation of a top hat temperature 
distribution is sufficiently accurate. 

Condition (1) has been described in $5  4.4 and 5 and leads to the requirement 
that 

which must be satisfied for the law Nu cc i-i to apply (to within 5 % of rW). This 
result is equivalent to that of Liepmann & Skinner (1954) that the Nusselt number 
should be > 1, but is more explicit. 

Condition (2) has been discussed for the turbulent boundary layer case in $5. 
It was found that the relationship 

must be satisfied for a unique calibration in laminar and turbulent flows to be 
expected. (It is clear from the combination of these two conditions that, for 
turbulent boundary layers, the heated film technique is particularly suitable for 
fluids of high Prandtl number.) 

For laminar boundary layers this condition is only significant (errors in skin 
friction less than 5 yo) within 2 or 3 gauge lengths from a stagnation point and 
6 gauge lengths from the leading edge for a flat plate flow. Errors are small near 
separation if the distance to the separation point exceeds approximately 50 gauge 
lengths. A more detailed discussion is given in Brown (1967 b) .  

Condition (3) appears to be relatively unimportant since, in practice, I is an 
effective length found from calibration such that the actual heat supplied is 
equivalent to that from a ‘top-hat’ distribution. The analysis has also been 
carried out for an error function wall temperature distribution (using the Fourier 
transform) and the various constants found to differ very little from those pre- 
sented here. 

u,llv > 6.61~4, (6.1) 

u,l/v < 6 4 ~  (6.2) 

6.2. Experimental application of the results 

It is fortuitous that the two series (4.10) and (4.14) relating the heat convected 
into the stream to skin friction and pressure gradient can both be represented 
rather accurately by the simple relationship 

the form of which was found from the integral approach referred to in $4.3. 
49-2 
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For the measurement of skin friction in flows with a pressure gradient the 
second term represents a correction to the relationship Nu cc &, the latter being 
found by calibration in zero pressure gradient. An investigation of this correction 
term (Brown 1967b) shows that it is only important (correction less than 10 %) 
within 40 gauge lengths from the stagnation point in favourable pressure 
gradients, but in typical adverse pressure gradients it is of the order of 10 % of 
7w when the skin friction is 40 yo of its Blasius value. A channel flow has also been 
considered, since this may be a useful way of calibrating the device, and it was 
found that the correction term was less than 2 %  of rW provided a*h]1 > 28, 
where h is the width of the channel. 

Detailed experiments to measure skin friction in an adverse pressure gradient, 
using the heated film and Stanton tube for comparison, have been reported in 
Brown (19674.  It was found that a Stanton tube and a heated film gave similar 
values for skin friction in slight adverse pressure gradients (agreement within 
10 Yo) but divergent values for an increasingly unfavourable gradient. Theo- 
retical predictions of skin friction using Curle’s (1962) method and measurements 
with the heated film (corrected for pressure gradient using (6.3) agreed closely 
(7 yo) up to the point where the skin friction was 30 yo of its Blasius value. At 
separation the experimental value of Stratford’s (1954) parameter x2Cp(dC,/dx)2 
was less than that predicted by Curle’s method, and if the method was modified 
accordingly, measurements and predictions of skin friction agreed within 10 yo 
up to the point where skin friction was 10 yo of its Blasius value. At this point the 
Stanton tube results appeared to be at  least 200 % in error. It would seem that 
this increasing discrepancy between the two measuring techniques was due to the 
increasing curvature of the velocity profile near the wall which could be taken 
into account in the case of the heated film but not in the case of the Stanton tube. 

An experiment was also reported (Brown 1967a) in which skin friction was 
measured in both turbulent and laminar channel flows with a heated film and a 
Stanton tube. Two, quite distinct, typical calibrations were found for the 
Stanton tube, and a single calibration found for the very short (0.006 in.) heated 
film used. The range of u J / v  in the experiment was between 12 and 40 which for 
air is within the limits described in Q 6.1. 
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